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Abstract —An analysis is preserrted for determining the propagation

modes in a microstrip line printed on a substrate having both eleetric- and

magnetic-type generaf anisotropies. An integraf equation is derived for the

unknown current distribution on the microstip line. The kernel of this

equation is a complicated 2x 2 matrix function of the substrate anisotropy

and of the substrate thickness. In order to determine the dis~rsion

relations for the propagating waves, this integral equation is reduced into a

finite system of linear equations by employing Galerkin’s technique.

Numencaf resnlts are given for several cases, and tke effect of rotating the

anisotropy axis in anisotropic substrates is investigated. The proposed

method can be employ~ to compute the propagation characteristics of

microstrip lines printed on anisotropic substrates.

I. INTRODUCTION

D URING RECENT YEARS, there has been a grow-

ing interest in using microstrip lines above aniso-

tropic substrates. A practical case is the use of ferrite-loaded

microstrip lines to develop nonreciprocal printed-circuit

microwave and millimeter-wave devices. Even for the widely

used dielectric substrates such as fused silica and alumina,

the assumption of isotropy is only an approximation, and

substrate anisotropy could have important implications on

the operation of microstrip circuits [1]. These effects are

expected to be amplified at higher millimeter-wave fre-

quencies.

The behavior of guided modes on the ferrite-filled micro-

strip line with the magnetization perpendicular to the

ground plane has been investigated by Borburgb [2]. In this

treatment, the method proposed by Itoh and Mittra [3] for

the analysis of microstrip lines on isotropic substrates has

been employed. The characteristics of single and coupled

microstrips on anisotropic substrates with a diagonal per-

mittivit y tensor have been analyzed by Alexopoulos and

Krowne [4] by using a quasistatic-mode approach. Several

other anisotropic dielectric substrate geometries have been

treated in the literature [5], [6]. Hybrid modes have been

also analyzed for microstrip lines [7], [8] with anisotropic

substrates.
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Fig. 1. Anisotropic substrate rrricrostrip geometry.

In this paper, the propagation of guided waves on a

microstrip line with the most general— single layer— sub-

strate anisotropy is investigated. The substrate electromag-

netic properties are described by the tensors of permittivity

i and permeability ~. These tensors are defined as 3 x 3

matrices, and no restrictions are imposed on their elemerds.

Therefore, the presented analysis can be applied easily to

any substrate anisotropy of the electric or magnetic type.

The microstrip line is assumed uncovered, and therefore

the treatment involves a continuous spectrum of eigen-

waves. In Section II, an integral equation is developed for

the unknown current distribution on the infinitesimally

thin microstrip line. In order to determine the characteris-

tics of propagating modes, a moments technique similar to

that used in [3] is applied in Section III. Results of the

numerical computations are given in Section IV.

In the following analysis, an exp ( + jut) time depen-

dence of the field quantities is assumed and is suppressed

throughout.

II. INTEGRAL EQUATION FOR THE MICROSTRIP LINE

In Fig. 1, the geometry of a microstrip line printed on an

anisotropic substrate is shown. The rrricrostrip width is

denoted by 2w. An anisotropic layer of thickness d is

placed on a perfectly conducting plane at z = O (see Fig. 11).

The tensors i and ~ in a Cartesian coordinate system can

be written in the form

The space above the substrate (z> d) is assumed to be

occupied by an isotropic and homogeneous medium with
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c~ and p ~ denoting the permittivity and permeability val-

ues, respectively. Then the free-space propagation constant

for the z > d half space is defined to be kO = a=.

The solution of the Maxwell equations for a grounded

general anisotropic layer has been investigated by

Tsalamengas et al. [9]. The electromagnetic field E=, Ha

associated with the anisotropic medium can be described in

terms of a Fourier integral

(2)

where k = kX2 + kYj, p = X2 + y$, and the subscript a

refers to the anisotropy.

Being interested, in this paper, only in waves guided

along the microstrip axis (taken here arbitrarily as the

y-axis), it is implied that all the field quantities should have

an exp ( – j~y ) behavior. This means that in (2) the in-

tegral over the ky variable should be reduced to a single

term by substituting kY = /3 or equivalently that the ea and

ha Fourier transforms have a 8(kY – ~) dependence, with

8(. ) being the delta distribution. Then, following [9, eq.

(5)], the electromagnetic field inside the anisotropic sub-

strate can be described in terms of the two-dimensional

vectors defined in the Fourier space as

( k.ea(k, z)
Ya(z)= j.(ea(k, z)xk)

)

(

k.ha(k, z)

)
X.(Z)= j.(~a(’, z)xk) “ (3)

Following a “two-point boundary-value problem” formu-

lation, and by incorporating the boundary conditions on

the z = O perfect conductor surface, the x. and y. can be

obtained from the relations

where c is a two-dimensional unknown vector to be

eliminated; the 2 X 2 matrices xl(z)= [Xtj(Z)] and ~l(z)

= [YIj(z)] are given in [9, eqs. (16a) -(17d)].
The electromagnetic field E,, H, for the z > d half space

can be described in a similar manner as in (2) and (3) by

defining new two-dimensional vectors Y,(z) and x.(z).
Then by solving the Maxwell equations for the isotropic

region and incorporating the outgoing wave conditions

when z ~ m, the following field representation is ob-

tained:

x(z)=(j):0)(3-Y”(Z-”(6)

Assuming an unknown current distribution ~(r)=

e ‘-@~.1(x ) on the microstrip line, the following boundary

conditions should be satisfied on the z = d interface plane:

2x( Ea(r)– E,(r) )=0 (8)

2X( Ha(r) –H,(r)) = J(r). (9)
By transfor&ing these boundary conditions into Fourier

space with respect to the x and y variables, the following

equations are obtained instead of (8) and (9):

x.(d) –x,(d)=xJ (lo)

Ya(d)=yr(d) (11)
where

“=(2”5H))’(’-B’>‘=kxf+ky~

(13)

Substituting (4)-(7) into (10) and (11) and by eliminating

the vector c, a solution is obtained for the F; D coefficients

in the form

()[F
D

= ~l(d).~;l(d)
(-:lJo ‘~)

-(J}:O)l-’”xfo ’14)
Then by substituting (14) into (7), for z = d, the electric-

field tangential components on the z = d interface plane

after a lengthy matrix algebra can be written as follows:

where

1 det(il(d))
gX.(kX, ~)=—

\kl’ A

(16a)

x [ – (kxgll + jy,blp)~p,p

+ jyokX(– tipobQk. + ~gn)l (16b)

–1 det(.ii(d))
gYx(kx>P)= ~ A

l’!

y(z)= (_~po j})(~)e-o(z-d (7) gyy(k.P)=-&det(~(d)) ~ ‘

where y. = (k: + k; – k~)l/2, Re(yo) > O,Im(yo) >0, and
F, D are unknown expansion coefficients.

x [( gllkx + jyob#) OPOk.

+ jyoj?( – upob4kX + ~g22)] (16d)
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where the terms A, gij(i =1,2; j =1,2), and bi(i =1,4) are

defined in the Appendix.

In order to obtain the integral equation which is satisfied

by the unknown current distribution on the microstrip line

one has to transform (15) into spatial space by using the

two-dimensional convolution theorem. Then by imposing

the boundary conditions on the perfect conductor micro-

strip surface, the following integral equation is obtained:

where –w<x <wand

X exp( – jkXx).

III. DETERMINATION OF THE PROPAGATION

CONSTANTS ~

In order to determine the unknown propagation con-

stants ~ of the propagating modes on an anisotropic

substrate microstrip line, the nontrivial solutions of the

homogeneous integral equation (17) should be determined.

Following [3], by taking into account the edge conditions

at x = + W, the unknown current distribution on the mi-
crostrip line can be described in terms of the series

JX(X) = jj a~sin(n7r(x + w)/2w) (18)
~=o

J,(x) = ~ bncos(mr(x+ w)/2w)[l-(x/w)2] ‘1’2
*=0

(19)

where lx I < w.

Applying Galerkin’s procedure to (17) with the expan-

sions given in (18) and (19), an infinite system of coupled

equations is obtained as follows:

( )()K“ (B) ~;:n(B) ~n co

m = 0,1,2,...
~ K;~:(l?) K#n(J3) L ‘~=o

(20)

where the matrix elements are computed from

K~q~ =
J

‘@dkXQPJ - kX)gPq(kX, ~)@,n(k.) (21)
—w

with p and q being equal to x or y and

n7r eJk’w( - 1)* - e-Jk’w
@xn(~x)= Z ~2_(nn/2w)2 (22)

Oyn(kx) = j“w[Jo(kxw+ nT/2)+(-1)”.lo( kxw - n7f/2)]

(23)

where Jo(. ) is the zeroth-order Bessel function.

The propagation constants /3 for a given microstrip line

can be determined approximately by truncating the infinite

+1

+1
t k - plane

~anch cuts for ye

n

.,, ,,
,, ,’... .,... . ... .. . . .

surface
waves

1 \
Fig. 2. Complexplane integration contour.

system in (20). Then the propagation constants are equal to

the roots of the determinant of the truncated finite-order

system. However, prior to this, it is necessary to compute

numerically the integrals Kggn in (21). The integrations are

carried out on the real kx axh. Then it is necessary to take

into account the singularities of the integrand functions. It

can easily be shown that the singularity points of the

integrand functions in (21) are determined from the roots

of the equation

A(kX, /3)

~t[~l(d)] ‘0
(24)

for a given ~ value.

To this end, a numerical” root search algorithm has been

developed to compute with fine accuracy the location of

the roots of (24). It should be noted since A/det (xl(d)) is

a complex function, the real and the imaginary parts of this

function should vanish for each root. The singularity points

correspond to surface waves excited on the grounded an-

isotropic layer. Assuming the singularities have been de-

termined then in the vicinity of each root, a contour

integration is performed by encircling each singularity point

by a semi-circle as shown in Fig. 2, where the branch cuts

for the y. function are also shown. The contribution from

each half circle is equal to the half residue value of the

integrand function. A Newton–Cotes with Romberg esti-

mate numerical integration routine is used in the computa-

tions. In order to ensure sufficiently high accuracy, lower

(kx + – CO) and upper (kx + co) bounds are taken and a
dense subdivision scheme is employed on the real kX axis.

IV. NUMERICAL RESULTS

In this section, numerical results are given for ferrite and

uniaxial sapphire microstrip substrates computed by apply-

ing the method described in the previous sections.

In ferrite substrates, the orientation of the biasing mag-

netostatic field is defined with the unit vector

X = cos 8.2 + sin 190(cospoi + sinrfoj).

Then the ji(~o, rpo) permeability tensor is computed by

applying a unitary transformation to the well-known

~(ilo = O, cpO) Polder tensor [10]. The notation of [10] is

adopted here for the P( $0 = O, qo) tensor elements by
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Fig. 3. Normalized propagation constant versus frequency. fl\kO for
00=~0=800, d=0.5mm, w=lmm, and c,=1O.

defining the frequencies QO= yHDc, am = yMDc, and u.

The ferrite layer permittivity is taken as a scalar quantity,

i.e., < = Eoc,l. In all of our computations, u~/21r = 8.408

GHz (i.e., kf~c = 0,3Wb/m2).

When we deal with a zero-order solution of the problem,

only the terms with n = O are taken into account for the

expansions (18) and (19), and the dispersion equation is

simply

K{{(p)=o. (25)

In an Nth-order solution approach, the summation in (18)

and (19) extend over the terms n = 1,. .-, N and n =

0,1,. . . , N – 1, respectively, leading to a dispersion equa-
tion of the form

det

i:
1.

=0:

1
(26)

In order to determine the roots of (26), the determinant is

computed for many ~ values. In a first step, the roots are

located roughly and then a Regula–Falsie procedure is

applied to determine accurately these roots.

In Fig. 3, the variation of the “/3/k0 normalized propa-

gation constant with the operation frequency is given for

TO = ~0 = 80° inclined biasing field for two different Uo/am
ratios. Since at higher frequencies the ferrite anisotropy

TABLE I
COMPUTED/l/k. VALUESFORA FERRITESUBSTRATEAT 20 GHz

WITHC,=lO, ~O= 00,d=l mm

90

w c“ 30° 60° 90°
——

0.50 2.72 ?.74 2.T9 2.81

1.00 2.90 2.82 2.88 2.91

2.00 2.84 2.88 2.94 2.98

4.03 2,a7 2.90 2.9’1 3.00

TABLE II
PROPAGATION CONSTANTS OF FERRITE-LOADED MICROSTRJP LINES

FoR~=20G Hz,d=lm m,80=9rO= 8t)0,ANDC,= lo”

I f3 (.-l)

~
The order of the solution is o–5 and w = 0.5 mm or w = 1 mm.

diminishes as a- 2, the difference between the two disper-

sion curves is very small at 35 GHz. In Table I, results are

given for ~/k. values at 20 GHz ‘for w = 0.50–4.00 mm,

tio/a~ = 0.1124, ~,= 10, d = 1 mm, r+. = 0°, and several

190 angles. The variation of the propagation constants with

the 80 angle is larger for wider strips. Usually, one or two

surface waves are encountered in the computation of the

K&q~ integrals.

The convergence of the procedure outlined above was

found to be fast. Table II includes the values of ~ corre-

sponding to solutions of order O–5 for w = 0.5 mm and

w =1.00 mm.

Furthermore, in order to have an independent check

with previously published results, propagation constants in

uniaxially anisotropic sapphire substrates have been com-

puted for several frequencies and directions of the an-

isotropy axis. In this case, the tensors i and ~ have the

forms

and

respec..

El Cos280 + c2sin280 O (cl–c2)sin&Ocosfi0

o c1 o

(cl– E2)sin80cos&o O Cl sin280 + c2cos280 1

(27)

p=poi3

vely. The anisotropy axis is defined by the 80

angle. The parameters c1 and cz are given the values

CI =9.4 and C2= 11.6, taken from [8]. The geometrical

parameters of the structure are taken to be d = 0.5 mm and

w = 0.5 mm. Fig. 3 of [8] illustrates the variation of c~ff =

( P/kO)* versus ~ = LJ/2n for the structure under consider-
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TABLE III
D/kO versus F (GHz) AND 00 FORA UNIAXIALLY ANISOTROPIC

SUBSTRATE(d= w = 0.5 mm, Cl= 9.4, (z= 11.6)

x-f

30 5 10 20 30

0°
I

2.91 2.93 3.03 3.09

30* 2.86 2.88 2.96 3.01

~oo
?.75 7.77 2.84 2.90

90° I ?.69 2.71 ?.77 ?.8>
,,

ation in the special case 00 = O. The curve, corresponding

to the value w/d= 2 of this figure, is closely related to the

first row of our Table III (note that the width of the strip

in [8] is denoted by w, whereas in our treatment it is noted

by 2w). Comparison between these two reveals an excellent

agreement.

V. CONCLUSIONS

In this paper, a semi-analytical technique is presented

for the analysis of propagating waves on microstrip lines

printed on the most general-type anisotropic substrates.

Numerical results are given for magnetically or electrically

anisotropic microstrip lines.

APPENDIX

Definitions of the bi, gij, and A terms appearing in

(16a) -(16d) are

bl=xll(d)yzz(d) –yzl(d)xlz(d)

b4=y11(d)x,,(d) –yl,(d).x,l(d)

gll = O-Xodet (Pi(d))+ jyo%

g2z = – UI-@s + jyodet(~~(~))

b2=y,1(d)x22(d) –y22(d)x21(d)

b~=ylz(d)xll(d) –yll(d)xlz(d)

where the elements of the following matrices

(%(z) %,(z)
i,(z)=

X21(Z) X22(Z) )

VI(Z) =
(

Yll(z) Y12(Z)

Y21(Z) Y22(Z) )

are determined by [9, eqs. (16.a)–(17.d)]

A = jy,tic,blb, - ( jyOb2’+ ap, det(~l(d)))

(UColZ- jyodet(~,(d)))
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