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Propagation Characteristics of a Microstrip Line
Printed on a General Anisotropic Substrate
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Abstract —An analysis is presented for determining the propagation
modes in a microstrip line printed on a substrate having both electric- and
magnetic-type general anisotropies. An integral equation is derived for the
unknown current distribution on the microstrip line. The kernel of this
equation is a complicated 2 X 2 matrix function of the substrate anisotropy
and of the substrate thickness. In order to determine the dispersion
relations for the propagating waves, this integral equation is reduced into a
finite system of linear equations by employing Galerkin’s technique.
Numerical results are given for several cases, and the effect of rotating the
anisotropy axis in anisotropic substrates is investigated. The proposed
method can be employed to compute the propagation characteristics of
microstrip lines printed on anisotropic substrates.

I. INTRODUCTION

URING RECENT YEARS, there has been a grow-

ing interest in using microstrip lines above aniso-
tropic substrates. A practical case is the use of ferrite-loaded
microstrip lines to develop nonreciprocal printed-circuit
microwave and millimeter-wave devices. Even for the widely
used dielectric substrates such as fused silica and alumina,
the assumption of isotropy is only an approximation, and
substrate anisotropy could have important implications on
the operation of microstrip circuits [1]. These effects are
expected to be amplified at higher millimeter-wave fre-
quencies.

The behavior of guided modes on the ferrite-filled micro-
strip line with the magnetization perpendicular to the
ground plane has been investigated by Borburgh [2]. In this
treatment, the method proposed by Itoh and Mittra [3] for
the analysis of microstrip lines on isotropic substrates has
been employed. The characteristics of single and coupled
microstrips on anisotropic substrates with a diagonal per-
mittivity tensor have been analyzed by Alexopoulos and
Krowne [4] by using a quasistatic-mode approach. Several
other anisotropic dielectric substrate geometries have been
treated in the literature [5], [6]. Hybrid modes have been
also analyzed for microstrip lines [7], [8] with anisotropic
substrates.
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Fig. 1. Anisotropic substrate microstrip geometry.

In this paper, the propagation of guided waves on a
microstrip line with the most general—single layer—sub-
strate anisotropy is investigated. The substrate electromag-
netic properties are described by the tensors of permittivity
€ and permeability {i. These tensors are defined as 33
matrices, and no restrictions are imposed on their elements.
Therefore, the presented analysis can be applied easily to
any substrate anisotropy of the electric or magnetic type.
The microstrip line is assumed uncovered, and therefore
the treatment involves a continuous spectrum of eigen-
waves. In Section II, an integral equation is developed for
the unknown current distribution on the infinitesimally
thin microstrip line. In order to determine the characteris-
tics of propagating modes, a moments technique similar to
that used in [3] is applied in Section III. Results of the
numerical computations are given in Section IV.

In the following analysis, an exp(+ jwt) time depen-
dence of the field quantities is assumed and is suppressed
throughout. ‘

II. INTEGRAL EQUATION FOR THE MICROSTRIP LINE

In Fig. 1, the geometry of a microstrip line printed on an
anisotropic substrate is shown. The microstrip width is
denoted by 2w. An anisotropic layer of thickness d is
placed on a perfectly conducting plane at z = 0 (see Fig. 1).
The tensors € and p in a Cartesian coordinate system can
be written in the form

€xx E)cy €z p‘xx lu'xy Fxz
é - €y)c €yy Eyz F, = AU‘yx p’yy p‘yz (1)
€:x ezy €, Mox nu'zy B

The space above the substrate (z > d) is assumed to be
occupied by an isotropic and homogeneous medium with
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€, and p, denoting the permittivity and permeability val-
ues, respectively. Then the free-space propagation constant
for the z > d half space is defined to be k= wyeop.

The solution of the Maxwell equations for a grounded
general anisotropic layer has been investigated by
Tsalamengas et al. [9]. The electromagnetic field E,, H,
associated with the anisotropic medium can be described in
terms of a Fourier integral

E(r) _ pro i eln)
mr) "L Bl By ) P oe)

@)

where k=k,%+k,y,p=x%+ yp, and the subscript a
refers to the anisotropy.

Being interested, in this paper, only in waves guided
along the microstrip axis (taken here arbitrarily as the
y-axis), it is implied that all the field quantities should have
an exp(— jBy) behavior. This means that in (2) the in-
tegral over the k, variable should be reduced to a single
term by substituting k, = B or equivalently that the e, and
h, Fourier transforms have a 8(k, — 8) dependence, with
8(-) being the delta distribution. Then, following [9, eq.
(5)], the electromagnetic field inside the anisotropic sub-
strate can be described in terms of the two-dimensional
vectors defined in the Fourier space as

| ke, (k,z)
val2) = (2-(ea(k, z)X k) )
k-h,(k,z)

2-(h,(k,z)XKk) | ®)

x,(z) = (

Following a “two-point boundary-value problem” formu-
lation, and by incorporating the boundary conditions on
the z =0 perfect conductor surface, the x, and y, can be
obtained from the relations

x,(2) = X,(2)-X[(d)-¢ (4)
yu(2) =Yi(2)-X;(d)-¢ (5)

where ¢ is a two-dimensional unknown vector to be
eliminated; the 2 X2 matrices )71(2)=[x,.j(z)] and Y,(z)
= [y,;(2)] are given in [9, egs. (16a)-(17d)].

The electromagnetic field E,, H, for the z > 4 half space
can be described in a similar manner as in (2) and (3) by
defining new two-dimensional vectors y.(z) and x.(z).
Then by solving the Maxwell equations for the isotropic
region and incorporating the outgoing wave conditions
when z— oo, the following field representation is ob-

tained:
0 (F)e—YO(Z—d)
weg |\ D

0 JYO (F)e—’}'o(z_d)
—wpy 0 /\D

5 ()= ©

3l(z) = ( ”)

where v, = (k2 + k]~ k$)'/%,Re(v,) > 0,Im(v,) > 0, and
F, D are unknown expansion coefficients.
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Assuming an unknown current distribution J(r)=
e PYJ(x) on the microstrip line, the following boundary
conditions should be satisfied on the z = d interface plane:

2x(E,(r)~ E,(r)) = 0 (®)
 ax(H ()~ H(r) = J(r). ©)
By transforming these boundary conditions into Fourier

space with respect to the x and y variables, the following
equations are obtained instead of (8) and (9):

x,(d)-x,(d)=x, (10)
y.(d)=y,(d) (11)
where
— 2.(kxj(kx)) _ A A
xj._( ke j(k.) )S(ky—,B), k=k%+k,p

(12)
(BRI 1 e ()
k) = (jy (kx)) L [ e (Jy (x,)).

(13)
Substituting (4)—(7) into (10) and {11) and by eliminating
the vector ¢, a solution is obtained for the F, D coefficients
in the form

(5)-[Rermw( 3, ]

whe 0

—(jg" w(zo)]_l-x,. (14)

Then by substituting (14) into (7), for z = d, the electric-
field tangential components on the z=d interface plane
after a lengthy matrix algebra can be written as follows:

e,.x(kx, d) 8xx 8xy Jx(kx)
(Ery(kx» d)) - (gyx gyy)(jy(kx))s(ky_ﬁ) (15)

where

gxx(kxa B) = |;1|_2‘ -(—l—et—(zl—(i)—)-

x [wﬂoﬁ(guﬁ - j'Yoblkx)+ onkx(wﬂob4B + kxg22)]

det(5,(d)) 162
_ 1 det(x
gxy(kxaﬁ)_lklz A

X[_(kx811+j70b1.8)‘°#o.3

+ Yok (= wpobyk , + .Bgzz)] (16b)

—1 det(%,(d
gyx(kx,B)=‘—k—’lz~et(—xAl(—)l

X [(‘*’Hokx(guﬁ — Jvobik,)— onB(wﬂome + kxg22)]

~ (16¢c)
g (0.f) = iy 1)
X [(guk, + jrob1B) wpok,
+ jYoB(— wpobsk, + Bgy)] (16d)
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where the terms A, g;(i=1,2; j=1,2), and b,(i =1,4) are
defined in the Appendix.

In order to obtain the integral equation which is satisfied
* by the unknown current distribution on the microstrip line
one has to transform (15) into spatial space by using the
two-dimensional convolution theorem. Then by imposing
the boundary conditions on the perfect conductor micro-
strip surface, the following integral equation is obtained:

(Jx(x')

[ GG=x) T (x")

i

) dx’ =0 (17)

where —w < x <w and

_ +oo [ 8uulkyB)  8ry(ky, B)
G(x)—f-oo dkx(gyx(kx,ﬂ), gyy(kx>B))

x exp(— jk,x).
III. DETERMINATION OF THE PROPAGATION
CONSTANTS $ ‘

In order to determine the unknown propagation con-
stants B of the propagating modes on an anisotropic
substrate microstrip line, the nontrivial solutions of the
homogeneous integral equation (17) should be determined.
Following [3], by taking into account the edge conditions
at x = + w, the unknown current distribution on the mi-
crostrip line can be described in terms of the series

J.(x)= i::oansin(nw(x+w)/2w) (18)

T (x) = i::obncos(nw(x +w)/2w)[1-(x/w)?]

(19)
where [x| < w.
Applying Galerkin’s procedure to (17) with the expan-
sions given in (18) and (19), an infinite system of coupled
equations is obtained as follows:

2 (KZ(8) K2.(B)\[en) }
Eo(K;Z’fn(B) K,{,{,,(p))(bn)—(), m=0,1,2,---
| (20)

where the matrix elements are computed from

: + o0
Kﬁ?nz dkxq)pm(_kx)gpq(kx’ B)(I)qn(kx) (21)

— o0
with p and g being equal to x or y and
nm e/5(=1)"— ek
2w g2 (na/2w)? _
®,,(k,)=j"w[Jo(kw+na/2)+(-1)"J(kw— nm/2)]
(23)

0, (k)=

(22)

-where J,(-) is the zeroth-order Bessel function.
The propagation constants 8 for a given microstrip line
can be determined approximately by truncating the infinite
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Fig. 2. Complex plane integration contour.

system in (20). Then the propagation constants are equal to
the roots of the determinant of the truncated finite-order
system. However, prior to this, it is necessary to compute
numerically the integrals K27, in (21). The integrations are
carried out on the real k, axis. Then it is necessary to take
into account the singularities of the integrand functions. It
can easily be shown that the singularity points of the
integrand functions in (21) are determined from the roots
of the equation

_é(kx’ :B)

dec[x, ()] 9

for a given 8 value. )

To this end, a numerical root search algorithm has been
developed to compute with fine accuracy the location of
the roots of (24). It should be noted since A /det(X,(d)) is
a complex function, the real and the imaginary parts of this
function should vanish for each root. The singularity points
correspond to surface waves excited on the grounded an-
isotropic layer. Assuming the singularities have been de-

. termined then in the vicinity of each root, a contour

integration is performed by encircling each singularity point .
by a semi-circle as shown in Fig. 2, where the branch cuts
for the v, function are also shown. The contribution from
each half circle is equal to the half residue value of the
integrand function. A Newton—Cotes with Romberg esti-
mate numerical integration routine is used in the computa-
tions. In order to ensure sufficiently high accuracy, lower
(k,— —o0) and upper (k, — c0) bounds are taken and a
dense subdivision scheme is employed on the real k ,-axis:

IV. NUMERICAL RESULTS

In this section, numerical results are given for ferrite and
uniaxial sapphire microstrip substrates computed by apply-
ing the method described in the previous sections.

In ferrite substrates, the orientation of the biasing mag-
netostatic field is defined with the unit vector

N = cos 3,2 + sin 3, (cos @o +sing, ).

Then the p(d,, py) permeability tensor is computed by
applying a unitary transformation to the well-known
p (P, =0, @,) Polder tensor [10]. The notation of [10] is
adopted here for the f(d#,=0,qp,) tensor elements by
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Fig. 3. Normalized propagation constant versus frequency. 8/k, for

¥y = @p =80°, d=0.5mm, w=1 mm, and ¢, =10.

defining the frequencies wy,=YHpc, w,, = YMpe, and w.
The ferrite layer permittivity is taken as a scalar quantity,
ie., €=¢q,l. In all of our computations, w,, /27 = 8.408
GHz (i.e., Mpc=0.3Wb,/m?).

When we deal with a zero-order solution of the problem,
only the terms with #n =0 are taken into account for the
expansions (18) and (19), and the dispersion equation is

simply

K3%(B)=o0. (25)
In an Nth-order solution approach, the summation in (18)
and (19) extend over the terms n=1,---,N and n=
0,1,---, N —1, respectively, leading to a dispersion equa-
tion of the form

XX xXx ! xy X
K1,1 KN ! K Kinv-1
: : I . :
. | . :
|
XX XX Xy Xy
det K3 Kiin 1 K3 K¥/n—1 0
________________ 8 S A S
px px
K5 K& } K% K§7v-1
. . \ . .
: X ! :
| :
yx px Ry - »y
K314 K3y w DK 10 KN—l,Nfl_

(26)
In order to determine the roots of (26), the determinant is
computed for many 8 values. In a first step, the roots are
located roughly and then a Regula—Falsie procedure is
applied to determine accurately these roots.

In Fig. 3, the variation of the B/k, normalized propa-
gation constant with the operation frequency is given for
®o = ¥, = 80° inclined biasing field for two different w, /w,,
ratios. Since at higher frequencies the ferrite anisotropy
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TABLEI
COMPUTED B/ ky VALUES FOR A FERRITE SUBSTRATE AT 20 GHz
WITH €, =10, ¢y = 0°, d =1 mm

30

° (o] (o] (=]
W ¢ 30 60 30
0.50 2.72 2.74 2.79 2.81
1.00 2,80 2.82 2.88 2.91
2.00 2.84 2.88 2.94 2.98
4.00 2.87 2.90 2.97 3.00

TABLEII

PROPAGATION CONSTANTS OF FERRITE-LOADED MICROSTRIP LINES
FOR =20 GHz, d =1 mm, ¥, = ¢, =80°, AND ¢, =10

ﬁ(-J)

N=| N=2

N=0

N=3 N=4 N=5

1113.43 1115.20 1101.82 1102.09 1101.72 1102.06

1148,01 1180.57 1138.78 1135.97 1136.0%  1136.30

The order of the solution is 0-5 and w =0.5 mm or w=1 mm.

diminishes as «~2, the difference between the two disper-
sion curves is very small at 35 GHz. In Table I, results are
given for B/k, values at 20 GHz for w = 0.50-4.00 mm,
wy /@, =01124, €,=10, d =1 mm, ¢,=0°, and several
¥, angles. The variation of the propagation constants with
the 9, angle is larger for wider strips. Usually, one or two
surface waves are encountered in the computation of the
K79, integrals.

The convergence of the procedure outlined above was
found to be fast. Table II includes the values of 8 corre-
sponding to solutions of order 0-5 for w=10.5 mm and
w =1.00 mm.

Furthermore, in order to have an independent check
with previously published results, propagation constants in
uniaxially anisotropic sapphire substrates have been com-
puted for several frequencies and directions of the an-
isotropy axis. In this case, the tensors € and i have the
forms

eycos’ By teysin?, 0 (e, —e€,)sind,cosd,
€=¢, 0 € 0
€, sin” &, + €, cos? 9,

(27)

(e, —€,)sindycosd, O

and

B=pol;
respectively. The anisotropy axis is defined by the 9,
angle. The parameters ¢; and e, are given the values
¢, =94 and e€,=11.6, taken from [8]. The geometrical
parameters of the structure are taken to be d = 0.5 mm and
w=0.5 mm. Fig. 3 of [8] illustrates the variation of e =
(B/ky)? versus f = w /27 for the structure under consider-
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TABLE IIT
B/kq versus F (GHz) AND &, FOR A UNIAXIALLY ANISOTROPIC
SUBSTRATE (d =w = 0.5 mm, ¢, = 9.4, ¢; =11.6)

f
3 .5 10 20 30
0° 2.91 2,93 3.03 3.09
30° 2.86 2.88 2.96 3.0%
60° 2.75 2.7 2.8 2.90
90° 2.69 2.n 2.77 2.8%

ation in the special case ¥, = 0. The curve, corresponding
to the value w/d = 2 of this figure, is closely related to the
first row of our Table III (note that the width of the strip
in [8] is denoted by w, whereas in our treatment it is noted
by 2w). Comparison between these two reveals an excellent
agreement.

V. CONCLUSIONS

In this paper, a semi-analytical technique is presented
for the analysis of propagating waves on microstrip lines
printed on the most general-type anisotropic substrates.

Numerical results are given for magnetically or electrically -

anisotropic microstrip lines.
APPENDIX

Definitions of the b,, g;;, and A terms appearing in
(16a)—(16d) are

b= xu(d))’n(d)" yul(d)xi,(d)
by=yu(d)xy(d)- J’12(d)‘x21(d)
8= wEOdet(?l(d))-l_ JYobs
820 = — wpobs + jyodet(¥y(d))
by = yn(d)xy(d)- yzz(d)le“(d)
by = y1a(d)xy1(d)— y11(d) x1,(d)
where the elements of the following matrices

)71(2) _ (xu(z) x15(2) )

xn(2)  xy(2)

’_’1(2) _ ()’11(2) )’12(2))

yaulz)  ym(2)
are determined by [9, egs. (16.a)—(17.4)]

A= jygweobib, — ( jyob, + wpgdet(Xy(d)))
(""‘0173 - ondet(Yl(d)))
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